G. Teyssière and P. Abry. Wavelet multifractal analysis of
high-frequency financial data (2010),
10th Vilnius Conference on Probability
Theory and Mathematical Statistics
G. Teyssière.
Détection de ruptures multiples sur des séries
chronologiques univariées et multivariées.
Application à des données de prix de l'énergie
(2008). (Rapport de recherche pour EDF).
G. Teyssière.
Bubbles, non-stationarity and double long memory (2004). Invited presentation to the
International Conference on Statistical Models for
Financial Data, organized by István Berkes and
Lajos Horváth at the
Institute of Statistics,
Graz University of Technology, Austria, May 2004.
G. Teyssière.
Nonlinear and semiparametric long-memory ARCH (2001).
Part of the material of this paper appeared in
L. Giraitis, P. Kokoszka, R. Leipus and G. Teyssière
On the power of R/S-Type tests under
contiguous and semi long-memory alternatives,
Acta Applicandae Mathematicae (2003),
(Special Issue for the
8th Vilnius Conference on Probability Theory and
Mathematical Statistics) vol 78, 285-299.
DOI.
The remainder of this paper has been inserted in others papers.
G. Teyssière.
Modelling exchange rates volatility with
multivariate long-memory ARCH processes (1997).
(Old Version).
G. Teyssière. Double long-memory financial time
series (1996),
Preprint
Presented in the 1997 Econometric Society European Meeting, the 1997 Society for Economic
Dynamics conference Oxford, the 28th Workshop of the Euro Working Group on Financial Modelling, May 2001,
Slides
Lectures Archives
2009: Aarhus University, PhD lectures, based on the draft version of the book Large Sample Inference for Long Memory
Processes (2012) Imperial College Press.
In 2013, I reviewed this book for Mathematical Reviews®;
MathSciNet subscribers can read this review from my
author profile.
Additional material, not covered in that book, on Long–Memory and Change–Points in Volatility Processes,
Slides.
2006-2007: Ensae, lectures (in French) on
Long-range dependence and change-points, Applications
to univariate and multivariate financial time series:
Leçon 1 : Processus fortement dépendants,
Transparents ;
Leçon 2 : Tests de détection de longue portée et estimateurs du paramètre de longue portée, Transparents;
Leçon 3 : Tests de détection de ruptures, Transparents;
Leçon 4 : Méthodes statistiques robustes aux ruptures, Transparents.
1993-1996: University of London, Lectures on optimization techniques with Maple. I have typed a 200 pages document.